Eventos Independientes
Dos o más eventos son independientes cuando la ocurrencia o no-ocurrencia de un evento no tiene efecto sobre la probabilidad de ocurrencia del otro evento (o eventos). Un caso típico de eventos independiente es el muestreo con reposición, es decir, una vez tomada la muestra se regresa de nuevo a la población donde se obtuvo.
Dos eventos, A y B, son independientes si la ocurrencia de uno no tiene que ver con la ocurrencia de otro.
Por definición, A es independiente de B si y sólo si:A y B, son independientes si la ocurrencia de uno no tiene que ver con la ocurrencia de otro.
Por definición, A es independiente de B si y sólo si:A es independiente de B si y sólo si:
(PnA)=P(A)P(B)
Eventos dependientes
Dos o más eventos serán dependientes cuando la ocurrencia o no-ocurrencia de uno de ellos afecta la probabilidad de ocurrencia del otro (o otros). Cuando tenemos este caso, empleamos entonces, el concepto de probabilidad condicional para denominar la probabilidad del evento relacionado. La expresión P (A|B) indica la probabilidad de ocurrencia del evento A sí el evento B ya ocurrió.
Se debe tener claro que A|B no es una fracción.
P (A|B) = P(A y B) / P (B) o P (B|A) = P(A y B) / P(A)
Probabilidad Condicional = P(A y B) / P (B) o P (B|A) = P(A y B) / P(A)
Probabilidad Condicional
Si A y B son dos eventos en S, la probabilidad de que ocurra A dado que ocurrió el evento B es la probabilidad condicional de A dado B, y se denota:A y B son dos eventos en S, la probabilidad de que ocurra A dado que ocurrió el evento B es la probabilidad condicional de A dado B, y se denota:
P(AlB)
Dos o más eventos son independientes cuando la ocurrencia o no-ocurrencia de un evento no tiene efecto sobre la probabilidad de ocurrencia del otro evento (o eventos). Un caso típico de eventos independiente es el muestreo con reposición, es decir, una vez tomada la muestra se regresa de nuevo a la población donde se obtuvo.
Dos eventos, A y B, son independientes si la ocurrencia de uno no tiene que ver con la ocurrencia de otro.
Por definición, A es independiente de B si y sólo si:A y B, son independientes si la ocurrencia de uno no tiene que ver con la ocurrencia de otro.
Por definición, A es independiente de B si y sólo si:A es independiente de B si y sólo si:
(PnA)=P(A)P(B)
Eventos dependientes
Dos o más eventos serán dependientes cuando la ocurrencia o no-ocurrencia de uno de ellos afecta la probabilidad de ocurrencia del otro (o otros). Cuando tenemos este caso, empleamos entonces, el concepto de probabilidad condicional para denominar la probabilidad del evento relacionado. La expresión P (A|B) indica la probabilidad de ocurrencia del evento A sí el evento B ya ocurrió.
Se debe tener claro que A|B no es una fracción.
P (A|B) = P(A y B) / P (B) o P (B|A) = P(A y B) / P(A)
Probabilidad Condicional = P(A y B) / P (B) o P (B|A) = P(A y B) / P(A)
Probabilidad Condicional
Si A y B son dos eventos en S, la probabilidad de que ocurra A dado que ocurrió el evento B es la probabilidad condicional de A dado B, y se denota:A y B son dos eventos en S, la probabilidad de que ocurra A dado que ocurrió el evento B es la probabilidad condicional de A dado B, y se denota:
P(AlB)
Muchas graxias por la info!
ResponderEliminarAgradezco su aportación, Dios lo Bendiga.
ResponderEliminargrasias
ResponderEliminargracias
ResponderEliminardenada
Eliminarthankiu
ResponderEliminarBuena expli
ResponderEliminarSECO LO ENTENDI AL FIN EN LAS CLASES DE LA U NO ENTENDIA NADA ,CREO AHORA QUE LOS PROFES ESTAN COLUDIDOS PARA QUE UNO NO ENTIENDA NADA AJAJAJAJA XD
ResponderEliminarC mamo XD
EliminarGracias amigo bendecido seas tu
ResponderEliminar